

High Speed Switching Applications

- ESD protected gate
- Low ON-resistance

Equivalent Circuit (top view)

Characteristic		Symbol	Rating	Unit	
Drain-source voltage	V _{DSS}	60	V		
Gate-source voltage	V _{GSS}	± 20	V		
Drain current (Note1)	DC	I _D	200	mA	
Dialif current (Noter)	Pulse	I _{DP} (Note 2)	760		
Power dissipation	P _D (Note 3)	320	mW		
Power dissipation		P _D (Note 4)	1000		
Channel temperature	T _{ch}	150	°C		
Storage temperature	T _{stg}	-55 to 150	°C		

Absolute Maximum Ratings (Ta = 25°C)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: The channel temperature should not exceed 150°C during use.

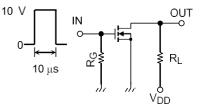
- Note 2: Pulse width $\leq 10 \ \mu s$, Duty $\leq 1\%$
- Note 3: Mounted on an FR4 board

(25.4 mm \times 25.4 mm \times 1.6 mm, Cu Pad: 0.42 mm² x 3)

Note 4: Mounted on an FR4 board (25.4 mm \times 25.4 mm \times 1.6 mm, Cu Pad: 645 mm 2)

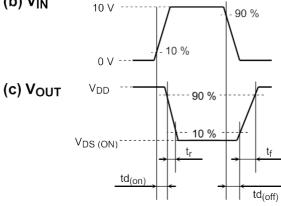
WEE Technology Company Limited FLAT/RM 705, 7/F, FA YUEN COMM BLDG NO.75, FA YUEN STREET, MONG KOK, KL, HONG KONG www.weetcl.com info@weetcl.com

All details in this data sheet are subject to change without notice. For more details and updates, please visit our website.


Electrical Characteristics (Ta = 25°C, Otherwise specified)

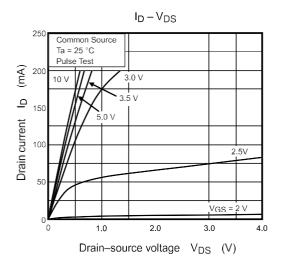
Cł	naracteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain-source	breakdown voltage	V (BR) DSS	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	60	—	_	V
Drain cutoff current	I _{DSS}	$V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	—	—	1	μA	
		V_{DS} = 60 V, V_{GS} = 0 V, Tj=150 $^{\circ}\text{C}$	—	—	200	μΑ	
		I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0~V$	—	—	±2	μΑ
Gate leakage current	$V_{GS}{=}{\pm}10$ V, $V_{DS}{=}0$ V		—	—	± 0.5		
	$V_{GS}{=}{\pm}5$ V, $V_{DS}{=}0$ V		—	—	±0.1		
Gate threshold	d voltage	V _{th}	$I_D = 250 \ \mu\text{A}, \ V_{DS} = V_{GS}$	1.1	—	2.1	V
Forward trans	fer admittance	Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 200 \text{ mA} \text{ (Note 5)}$	—	450		mS
Drain-source ON-resistance		R _{DS (ON)} (Note 5)	$I_D = 100 \text{ mA}, V_{GS} = 10 \text{ V}$	—	2.8	3.9	Ω
			$I_D = 100$ mA, $V_{GS} = 10$ V, Tj=150 $^\circ C$	—	5.4	8.1	
Drain-source ON-resistance	$I_D = 100 \text{ mA}, V_{GS} = 5 \text{ V}$		—	3.1	4.4		
			$I_D = 100 \text{ mA}, V_{GS} = 4.5 \text{ V}$	—	3.2	4.7	
Total Gate Charge Gate-Source Charge		Q _{G(tot)}	V _{DS} = 30 V, I _D = 200 mA V _{GS} = 4.5 V	—	0.27	0.35	nC
		Q _{GS}		_	0.08		
Gate-Drain Charge		Q_{GD}	VGS - 4.0 V	_	0.08		
Input capacitance		C _{iss}	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	—	11	17	pF
Output capacitance		C _{oss}		_	3	_	
Reverse transfer capacitance		C _{rss}		_	0.7	_	
Switching time	Turn-on delay time	t _{d(on)}		_	2	4	ns
	Rise time	tr	V_{DD} = 40 V, I_D = 160 mA V_{GS} = 0 V to 10 V, R_G = 50 Ω	_	3		
	Turn-off delay time	t _{d(off)}		_	7	14	
	Fall time	t _f	1	_	24	_	
Drain-source forward voltage		V _{DSF}	$I_D = -115 \text{ mA}, V_{GS} = 0 \text{ V}$ (Note 5)	—	-0.87	-1.2	V

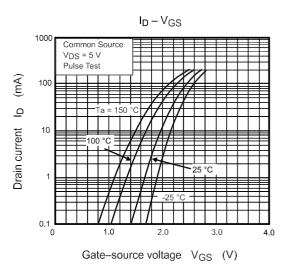
Note 5: Pulse test

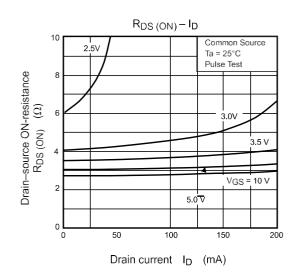

Switching Time Test Circuit

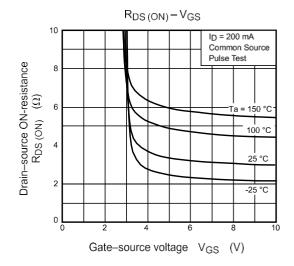
(a) Test Circuit

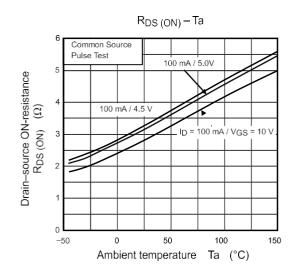
 $V_{DD} = 40 V$ $R_G = 50 \ \Omega$ $\mathsf{D}.\mathsf{U}.\leq 1\%$ V_{IN}: t_r, t_f < 5 ns Common Source Ta = 25°C



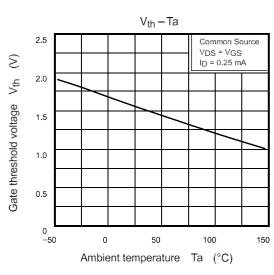

WEE Technology Company Limited FLAT/RM 705, 7/F, FA YUEN COMM BLDG NO.75, FA YUEN STREET, MONG KOK, KL, HONG KONG www.weetcl.com info@weetcl.com


All details in this data sheet are subject to change without notice. For more details and updates, please visit our website.





WEE Technology Company Limited

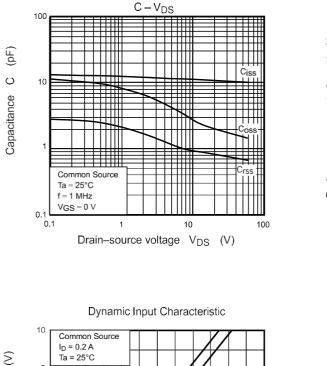

BLDG NO.75, FA YUEN STREET, MONG

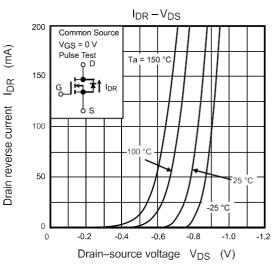
FLAT/RM 705, 7/F, FA YUEN COMM

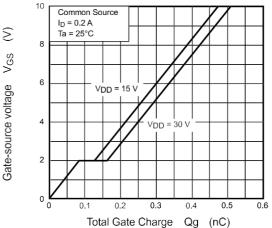
KOK, KL, HONG KONG

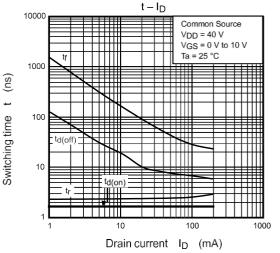
www.weetcl.com

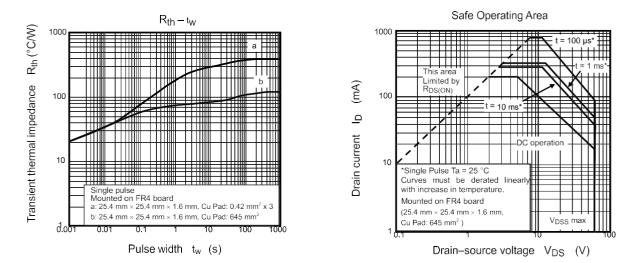
info@weetcl.com



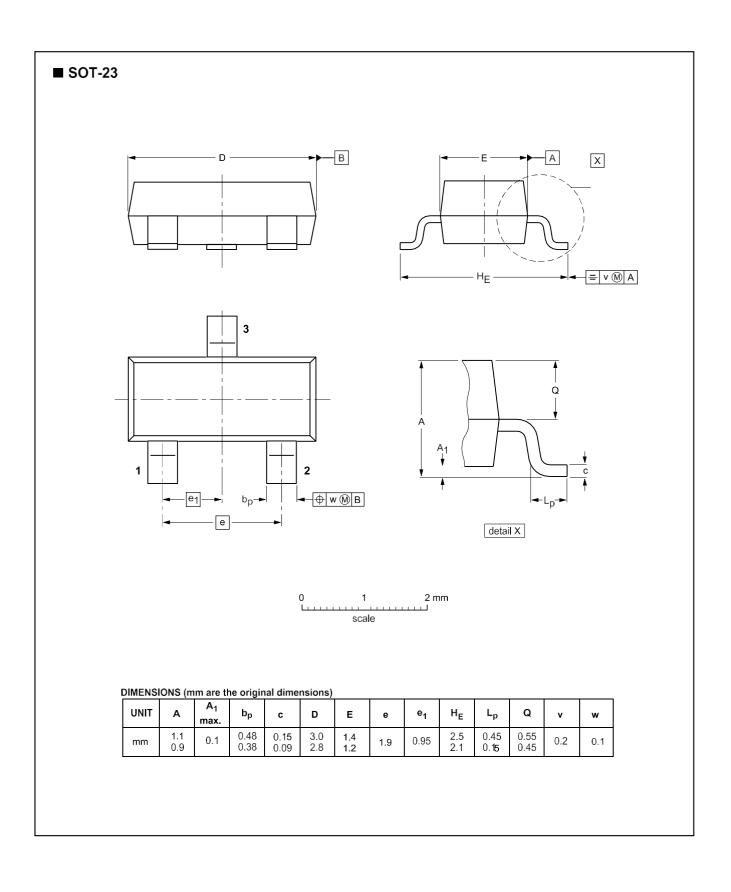

All details in this data sheet are subject to change without notice. For more details and updates, please visit our website.







Note: The above characteristics curves are presented for reference only and not guaranteed by production test.



WEE Technology Company Limited FLAT/RM 705, 7/F, FA YUEN COMM BLDG NO.75, FA YUEN STREET, MONG KOK, KL, HONG KONG www.weetcl.com info@weetcl.com

All details in this data sheet are subject to change without notice. For more details and updates, please visit our website.

WEE Technology Company Limited FLAT/RM 705, 7/F, FA YUEN COMM BLDG NO.75, FA YUEN STREET, MONG KOK, KL, HONG KONG www.weetcl.com info@weetcl.com

All details in this data sheet are subject to change without notice. For more details and updates, please visit our website.

